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SYSTEMS AND METHODS FOR
GENERATING A LATENT SPACE RESIDUAL

TECHNICAL FIELD

[0001] The present disclosure relates generally to encod-
ers and decoders.

BRIEF SUMMARY OF THE DISCLOSURE

[0002] Embodiments of the disclosure are directed to
systems and methods for generating a latent space residual.
In one embodiment, a computer-implemented method may
include obtaining, from a non-transient electronic storage, a
target frame. The computer-implemented method may also
include obtaining, from the non-transient electronic storage,
a reconstructed frame. The reconstructed frame may be
based on surrounding reference frames. The computer-
implemented method may further include encoding, with a
physical computer processor, the target frame into a latent
space to generate a latent space target frame. The computer-
implemented method may also include encoding, with the
physical computer processor, the reconstructed frame into
the latent space to generate a latent space reconstructed
frame. The computer-implemented method may further
include generating, with the physical computer processor, a
latent space residual based on the latent space target frame
and the latent space reconstructed frame.

[0003] In embodiments, the computer-implemented
method may include decoding, with the physical computer
processor, the latent space residual and the latent space
reconstructed frame to generate a decoded target frame.
[0004] In embodiments, the reconstructed frames may be
generated by a number of steps. One step may include
obtaining, from the non-transient electronic storage, one or
more reference frames. Another step may include encoding,
with the physical computer processor, the one or more
reference frames. Yet another step may include decoding,
with the physical computer processor, the one or more
reference frames to generate one or more decoded reference
frames. Another step may include predicting, with the physi-
cal computer processor, a reconstructed frame based on the
one or more decoded reference frames.

[0005] In embodiments, encoding the target frame and the
reconstructed frame may map the target frame and the
reconstructed frame from an image space to a latent space.
[0006] In embodiments, the latent space residual and the
latent space reconstructed frame may be quantized in the
latent space.

[0007] In embodiments, the latent space residual and the
latent space reconstructed frame may be entropy coded.
[0008] In another embodiment, a computer-implemented
method may be disclosed. The computer-implemented
method may include obtaining, from a non-transient elec-
tronic storage, a target frame. The computer-implemented
method may also include obtaining, from the non-transient
electronic storage, one or more reference frames surround-
ing the target frame. The computer-implemented method
may further include obtaining, from the non-transient elec-
tronic storage, an image transformative model. The image
transformative model may include an encoder and a decoder.
The computer-implemented method may further include
applying, with the physical computer processor, the one or
more reference frames to the image transformative model to
generate one or more decoded reference frames. The com-

Mar. 4, 2021

puter-implemented method may further include predicting,
with the physical computer processor, a reconstructed frame
corresponding to the target frame based on the one or more
decoded reference frames. The computer-implemented
method may also include applying, with the physical com-
puter processor, the target frame to the encoder to generate
a latent space target frame. The computer-implemented
method may further include applying, with the physical
computer processor, the reconstructed frame to the encoder
to generate a latent space reconstructed frame. The com-
puter-implemented method may further include generating,
with the physical computer processor, a latent space residual
based on the latent space target frame and the latent space
reconstructed frame.

[0009] In embodiments, the computer-implemented
method may include applying, with the physical computer
processor, the latent space residual and the latent space
reconstructed frame to the decoder to generate a decoded
target frame.

[0010] In embodiments, the encoder may map an image
space to a latent space.

[0011] In embodiments, the decoder may map a latent
space to an image space.

[0012] In embodiments, the image transformative model
may be based on a neural network.

[0013] In embodiments, the latent space residual and the
latent space reconstructed frame may be quantized in the
latent space.

[0014] In embodiments, the latent space residual and the
latent space reconstructed frame may be entropy coded.
[0015] In another embodiment, a system for generating a
latent space residual may be disclosed. The system may
include a non-transient electronic storage. The system may
also include a physical computer processor configured by
machine-readable instructions to perform a number of
operations. One operation may include obtaining a target
frame. Another operation may include obtaining a recon-
structed frame. The reconstructed frame may be based on
surrounding reference frames. Another operation may
include encoding the target frame into a latent space to
generate a latent space target frame. Yet another operation
may include encoding the reconstructed frame into the latent
space to generate a latent space reconstructed frame.
Another operation may include generating a latent space
residual based on the latent space target frame and the latent
space reconstructed frame.

[0016] In embodiments, the physical computer processor
may be further configured by machine-readable instructions
to decode the latent space residual and the latent space
reconstructed frame to generate a decoded target frame.

[0017] In embodiments, the physical computer processor
may be further configured by machine-readable instructions
to display, via a graphical user interface, the decoded target
frame.

[0018] In embodiments, the reconstructed frames may be
generated by a number of operations. One operation may
include obtaining one or more reference frames. Another
operation may include encoding the one or more reference
frames. Another operation may include decoding the one or
more reference frames to generate one or more decoded
reference frames. Yet another operation may include pre-
dicting a reconstructed frame based on the one or more
decoded reference frames.
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[0019] In embodiments, encoding the target frame and the
reconstructed frame may map the target frame and the
reconstructed frame from an image space to a latent space.
[0020] In embodiments, the latent space residual and the
latent space reconstructed frame may be quantized in the
latent space.

[0021] In embodiments, the latent space residual and the
latent space reconstructed frame may be entropy coded.
[0022] Other features and aspects of the disclosed tech-
nology will become apparent from the following detailed
description, taken in conjunction with the accompanying
drawings, which illustrate, by way of example, the features
in accordance with embodiments of the disclosure. The
summary is not intended to limit the scope of the claimed
disclosure, which is defined solely by the claims attached
hereto.

BRIEF DESCRIPTION OF THE DRAWINGS

[0023] Further aspects of the present disclosure will be
more readily appreciated upon review of the detailed
description of the various disclosed embodiments, described
below, when taken in conjunction with the accompanying
figures.

[0024] FIG. 1 illustrates an example system for generating
a latent space residual, in accordance with various embodi-
ments.

[0025] FIG. 2 illustrates an example pipeline used to
generate a latent space residual, in accordance with embodi-
ments of the disclosed technology.

[0026] FIG. 3 is an operational flow diagram illustrating
an example process for generating a latent space residual, in
accordance with one embodiment.

[0027] FIG. 4 illustrates an example frame, in accordance
with one embodiment.

[0028] FIG. Sillustrates an example quantized latent space
frame, in accordance with one embodiment.

[0029] FIG. 6 illustrates an example probability corre-
sponding to the latent space frame, in accordance with one
embodiment.

[0030] FIG. 7 illustrates an example reconstructed frame,
in accordance with one embodiment.

[0031] FIG. 8 illustrates an example latent space residual,
in accordance with one embodiment.

[0032] FIG. 9 illustrates an example probability corre-
sponding to the latent space residual, in accordance with one
embodiment.

[0033] FIG. 10 illustrates distortion results of various
compression systems, in accordance with one embodiment.
[0034] FIG. 11 illustrates distortion results of various
compression systems, in accordance with one embodiment.
[0035] FIG. 12 illustrates distortion results of various
compression systems, in accordance with one embodiment.
[0036] FIG. 13 illustrates bit-rate distribution, in accor-
dance with one embodiment.

[0037] FIG. 14 illustrates an example computing compo-
nent that may be used to implement features of various
embodiments of the disclosure.

[0038] The figures are described in greater detail in the
description and examples below are provided for purposes
of illustration only, and merely depict typical or example
embodiments of the disclosure. The figures are not intended
to be exhaustive or to limit the disclosure to the precise form
disclosed. It should also be understood that the disclosure
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may be practiced with modification or alteration, and that the
disclosure may be limited only by the claims and the
equivalents thereof.

DETAILED DESCRIPTION

[0039] Video content represents a majority of the total
internet traffic and the amount of traffic is expected to
increase as spatial resolution frame rate, color depth of
videos, and the number of users on video streaming services
increase. One area where efficiency can be improved is
through the encoding and decoding processes, which can be
computationally intensive. For example, the presently dis-
closed technology may relate to compression that finds an
optimal encoding and/or decoding function to improve the
rate distortion performance.

[0040] Various embodiments of the present disclosure are
directed to systems and methods for generating a latent
space residual. The latent space residual may be based on
one or more frames from target content. In embodiments, a
reconstructed frame and a corresponding target frame may
be encoded from an image space into a latent space. The
target frame may be the original frame the reconstructed
frame is based on. The reconstructed frame may be recon-
structed using methods described in U.S. patent application
Ser. No. 16/556,083, which is incorporated herein by refer-
ence in its entirety. The latent space reconstruction frame
and the latent space target frame may be used to generate a
latent space residual. The latent space residual and the latent
space reconstruction frame may be decoded to generate a
decoded target frame.

[0041] As used herein, latent space may refer to a space
into which content is encoded. The content in the latent
space may be referred to as a latent space representation of
the content. For example, latent space may be content that
has been encoded and/or quantized into content and/or
features. Image space may refer to an actual image and
different portions of that image (e.g., position on the image,
RGB, CMYK, and/or other portions of the image). A latent
space residual may refer to a difference between two latent
space representations. For example, a first latent space
representation may be of a first image and a second latent
space representation may be of a second image immediately
subsequent to the first image. A latent space residual
between the two might be the difference between the first
latent representation and the second latent representation.
Residual may refer to a difference between two values. An
error may refer to a visually noticeable error, an error about
a threshold value, a distortion error, etc. As used herein, a
frame may be a frame of a video sequence or other visual
content. As used herein, a target frame may be a frame that
is to be reconstructed. As used herein, a reference frame may
be an adjacent frame or a frame nearby the target frame. As
used herein, interpolation may be used to refer to recon-
struction, which in turn may refer to assembling, piecing
together, estimating, predicting, or otherwise generating a
frame based on encoded data. As used herein, a recon-
structed reference frame and/or a reconstructed target frame
may refer to a decoded reference frame and/or a target
frame, respectively, that is reconstructed using the methods
described in U.S. patent application Ser. No. 16/556,083.
[0042] Before describing the technology in detail, an
example environment in which the presently disclosed tech-
nology can be implemented will be described. FIG. 1
illustrates one such example environment 100.
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[0043] Environment 100 may be used in connection with
implementing embodiments of the disclosed systems, meth-
ods, and devices. By way of example, the various below-
described components of FIG. 1 may be used to generate a
latent space residual. The latent space residual may be
generated from one or more frames of target content. Con-
tent may include different types of media content, such as,
for example, videos, images, and/or other visual content.
Content may come in various resolutions, such as standard,
high definition (HD), ultra HD (UHD), 4 k UHD, 8 k UHD,
and/or other resolutions. Content may include one or more
frames. A reconstructed frame may be derived from inter-
polation, prediction, compression, decoding, and/or other
reconstruction techniques. The reconstructed frame may
include distortions, artifacts and/or other modifications that
result from the above interpolation, prediction, compression,
decoding, reconstruction, modification, alteration, etc. to the
target content. Server system 106 may include image trans-
formative model 114, as will be described herein. Image
transformative model 114 may map content from an image
space representation to a latent space representation, may
generate latent space representations from other latent space
representations, and/or may map content from the latent
space representation to the image space representation. This
may be accomplished using autoencoders, neural compres-
sion networks, and/or other encoder-decoder networks.
[0044] Image transformative model 114 may include an
encoder and a decoder. The encoder may predict, transform,
and/or encode target content. The encoder may predict
pixels based on previously-encoded pixels in a frame (e.g.,
intra prediction), or on previously-encoded frames (e.g.,
inter prediction). Image transformative model 114 in FIG. 1
may include a machine-learning-based encoder (e.g., a neu-
ral-network-based encoder), a block-based encoder, and/or
other encoders. The encoder may include one or more
convolutional layers, one or more quantization layers, one or
more normalization layers, one or more activation functions,
one or more latent spaces, one or more lossless encoders,
one or more entropy encoders, and/or other components.
Though not illustrated, it should be appreciated that a
communication system may be implemented in image trans-
formative model 114 to transmit content frony/to the encoder
to/from the decoder.

[0045] The decoder may decode, inverse transform, and/or
reconstruct the target content. The decoder may include a
machine-learning-based decoder (e.g., a neural-network-
based decoder), a block-based decoder, and/or other decod-
ers. The decoder may include one or more entropy decoders,
one or more lossless decoders, one or more deconvolutional
layers, one or more inverse normalization layers, one or
more image spaces, and/or other components. It should be
appreciated that the presently disclosed technology allows
for various encoders and decoders to be used that may be
selected on a particular application.

[0046] In embodiments, image transformative model 114
may be used in a pipeline to generate a latent space residual.
FIG. 2 illustrates an example pipeline 200 used to generate
a latent space residual, in accordance with embodiments of
the disclosed technology. Pipeline 200 may be used when a
reconstructed frame includes visually noticeable errors
which can be reduced by using a residual between the
reconstructed frame and its corresponding target frame.
[0047] As illustrated, reference frame 202 and reference
frame 232 may be obtained. A reference frame may include
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one or more frames surrounding a target frame. One or more
frames surrounding a target frame may be frames sequen-
tially just before or just after the target frame 222 in a video
sequence of images. In embodiments, the one or more
frames surrounding a target frame may be frames separated
by one or more frames from the target frame. It should be
appreciated that different intervals between the reference
frames 202 and 232 and the target frame 222 could be
appropriate for different applications. For example, the
interval could be 5, 20, 50, and so on.

[0048] Target frame 222 may also be obtained. A target
frame may be the frame to be compressed and/or decom-
pressed. Reference frame 202 may be encoded through
encoder 204. g, may represent an encoder, such as encoder
204. For example, the encoder may include five blocks. Each
block may include a convolutional layer and a Generalized
Normalization Transformation (GDN) layer. The convolu-
tional layers may have a kernel size, k, of about 5 and a
stride, s, of about 2. The encoded reference frame may be
quantized via quantization 206. Quantization may round or
otherwise limit the values of any data into a smaller subset
of values.

[0049] Latent space reference frame 208 may be decoded
by decoder 210 to generate decoded reference frame 212. g,
may represent a decoder, such as decoder 210. For example,
the decoder may be architecturally similar to the encoder
and include five blocks. Individual blocks may include
upsampled convolutions (k may be about 5 and s may be
about 2) and an inverse GDN layer. The decoder may
include three output channels, which may correspond to an
RGB image.

[0050] Inone example, encoder 204 and decoder 210 may
be part of an autoencoder. Reference frame 232 may go
through substantially the same process, as described above
for reference frame 202. One or more of reference frame
202, target frame 222, reference frame 232, decoded refer-
ence frame 212, and decoded reference frame 242 may be
used as input for reconstruction 250, which is described in
greater detail in U.S. patent application Ser. No. 16/556,083.
It should be appreciated that encoder 204, quantizer 206,
latent space 208, and decoder 210 may be the same as
encoder 324, quantization 326, latent space 238, and
decoder 240, respectively. In embodiments, encoder 204 and
encoder 224 may encode frames using an image compres-
sion strategy. For example, the image compression strategy
may use machine learning (e.g., U.S. patent application Ser.
Nos. 16/167,388, 16/249,861, 16/254,475, and 16/261,441
which are hereby incorporated by reference herein in their
entirety) or other image and/or video compression strategies.
[0051] An interpolated frame, or reconstructed frame 270,
may be encoded by encoder 272 into latent space recon-
structed frame 274. Similarly, target frame 260, which may
correspond to target frame 222 (e.g., they may be the same
frame), may be encoded by encoder 262 into a latent space
target frame 264. A visualization of a latent space target
frame channel may be illustrated by 266. Another example
of a latent space channel is further illustrated in FIGS. 5 and
8, described herein. In latent space, latent space recon-
structed frame 274 may be subtracted from latent space
target frame 264 to generate latent space residual 278. In
equation form, r=y=Y,..0,=8e(X)=8¢(Xrecon)> Where r may
represent the residual, y may represent latent space target
frame 264, v,...,, may represent latent space reconstructed
frame 274, g, may represent an encoder, X may represent
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target frame 260, and x,,., may represent reconstructed
frame 270. In some embodiments, latent space residual 278
may be quantized via quantization 276. A visualization of a
latent space residual channel may be illustrated by 280.
Another example of a latent space residual channel is further
illustrated in FIG. 8, described herein.

[0052] Latent space residual 278 may be entropy coded by
282 based on one or more probability models. For example,
the probability model may include a non-parametric fully
factorized model and/or more complex models. In one
example, the probability model may be

Py ~ Pyly = E[Pmd,(c)(yc [ ¢

Py~ Prig, =1p, 0 (e | 9

where p, may represent probability values of a quantized
latent space target frame, p,may represent probability values
of the latent space residual, and OW may represent the
parameters of the distributions that are used to describe the
probabilities of latent variables. The parameters, ), may
be estimated separately for each channel, c, in the latent
space so that each channel can have a different probability
model. This distribution can, for example, be a non-para-
metric piecewise linear density model used to describe the
probabilities of latent variables. Overall, a probability model
is used for entropy coding, i.e. to losslessly compress the
discrete latent variables into a compact bit stream.

[0053]

P;“Py(ﬂi ehd>ecm>eep)

In another example, the probability model may be

DA P2, B0 cmBep)

where 7 may represent the hyper prior latent variables which
may be transmitted as side information next to the latent
variables themselves (e.g., the hyper prior latent variables
may be taken into account by the hyperparameter decoder
network to describe the probabilities of the actual latents.
The data to transmit the hyper prior latents, which them-
selves are entropy coded with a fully factorized model, may
be less than the savings due to having a better probability
model for the latents. It may be worth it to transmit this
additional data). 0,, may represent a hyper-parameter
decoder network, 0_, may represent a context model net-
work, 8, may represent a fully-factorized model, and the
other variables may be the same as the above example
probability model. In embodiments, probability models may
be used to model entropy coding for latent space images,
latent space residuals, and/or motion information. The prob-
ability model may include distributions modeled as Gauss-
ians that may be predicted from hyper-parameters and a
context model network. It should be appreciated that other
probability models may be used to train the encoder and
decoder.

[0054] After entropy coding, latent space residual 278 and
latent space reconstructed frame 274 may be combined as
input for decoder 284 to generate decoded target frame 286.
In equation form, X=g(Y,.c.,+) Where X may represent
decoded target frame 286, g, may represent a decoder, y,.,..,
may represent latent space reconstructed frame 274, and r
may represent latent space residual 278 that has been
quantized.
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[0055] It should be appreciated that encoder 262 and 272
may be the same encoder. Similarly, it should be appreciated
that encoder 204, encoder 224, encoder 262, and encoder
272 may be the same encoder and that decoder 210, decoder
240, and decoder 284 may be the same decoder. It should
also be appreciated that using the same encoder and decoder
throughout pipeline 200 may allow for easy reconfiguration
by swapping out encoder-decoder pairs for a particular
application while exploiting the advantages of a given
encoder-decoder pair. For example, using the same encoder
and decoder throughout pipeline 200 may reduce the number
of parameters to optimize and track, while making the
reconstruction quality the same for reference frames, recon-
structed frames, and/or decoded frames. By using the same
encoder and decoder, the reference frame quality levels may
not need to be adjusted after the latent space residual is
generated because the reconstruction quality for the decoded
reference frames and the decoded target frame may be the
same.

[0056] Moreover, training the image transformative model
with training content may be simplified when the same
image transformative model (which may be referred to as an
encoder-decoder) are used throughout pipeline 200. In one
example, training content may include a septuplets data set.
A random sample of triplets may be selected with various
intervals of one, two, or three. The mean squared error may
be used as image distortion loss d, as used in the equation
below. Different rate-distortion ratios may be achieved by
training with different weights A,...,,, and &,,,.. In embodi-
ments, independent uniform noise may be added to approxi-
mate quantization performed after encoding target content.
For example, the independent uniform noise may be added
to latent space values during training. The image transfor-
mative model may be trained based on one or more param-
eters, which may include rate-distortion, bit-rate, quality
level, efficiency, etc. For example, the encoder and decoder
may jointly optimize the rate-distortion objective function
for reference frames 202 and 232 and latent space residual
278 together:

. .
/\img =argminE,.,

Aimg

2
1
~logy py(F) + Aingd(x, 2) 4 ) 5(=logy py(5)) + Aimgd (5. %)
i=1

where \={¢, ¢', py, p;}, which may represent the learned
parameters, —log, p, (f)+A,,.d(x,X) may correspond to the
residual rate-distortion objective function, and X,_, *Y4(~log,
ps(J)+M,,,.d(x,,X,)) may correspond to the reference frame
rate distortion objection function.

[0057] In another example, an optimal inter-frame com-
pression strategy for a fixed target quality may achieve the
lowest bit-rate for reconstructed and/or decoded frames,
while having a perceptually similar quality as the reference
frames. In embodiments, where the image compression
network for the reference frames may also be used for the
residuals in the inter-frame compression block, the final
reconstructed and/or decoded image quality may be similar.
The quality may be determined by training the image
compression network for a particular value of A, .. in the loss
function above with /\. In this case, the degree of freedom
may come from selecting A for the interpolation auto-

recon
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encoder, as described in U.S. patent application Ser. No.
16/556,083. For example, by choosing a lower quality for
the interpolation the bit-rate may be largely reduced but this
could negatively impact the bit-rate for the residual. On the
opposite end, choosing a higher quality for the interpolation
may not be ideal either, as large motion can be present, such
that interpolation may be difficult and allocating more bits to
encode the residuals may be optimal.

[0058] The optimal strategy may be determined by com-
paring multiple, different interpolation configurations at test
time and using one of the multiple, different interpolation
configurations that results in the lowest total bitrate after
residual computation. In some embodiments, the networks,
or pipelines, may be trained independently. The reconstruc-
tion pipeline, described in U.S. patent application Ser. No.
16/556,083, may be trained first for different 2., values in
the loss function and using ground truth images. The image
compression pipeline may be trained afterwards, using one
of the obtained interpolation models and keeping its param-
eters fixed.

[0059] Referring back to FIG. 1, electronic device 102
may include a variety of electronic computing devices, such
as, for example, a smartphone, tablet, laptop, computer,
wearable device, television, virtual reality device, aug-
mented reality device, displays, connected home device,
Internet of Things (IOT) device, smart speaker, and/or other
devices. Electronic device 102 may present content to a user
and/or receive requests to send content to another user. In
some embodiments, electronic device 102 may apply image
transformative model 114 to target content. In embodiments,
electronic device 102 may store image transformative model
114.

[0060] As shown in FIG. 1, environment 100 may include
one or more of electronic device 102 and server system 106.
Electronic device 102 can be coupled to server system 106
via communication media 104. As will be described in detail
herein, electronic device 102 and/or server system 106 may
exchange communications signals, including content, meta-
data, quality levels, quantization step sizes, user input,
encoders, decoders, latent space representations, residuals,
difference maps, security and encryption information, and/or
other information via communication media 104.

[0061] In various embodiments, communication media
104 may be based on one or more wireless communication
protocols such as Wi-Fi, Bluetooth®, ZigBee, 802.11 pro-
tocols, Infrared (IR), Radio Frequency (RF), 2G, 3G, 4G,
5@, etc., and/or wired protocols and media. Communication
media 104 may be implemented as a single medium in some
cases.

[0062] As mentioned above, communication media 104
may be used to connect or communicatively couple elec-
tronic device 102 and/or server system 106 to one another or
to a network, and communication media 104 may be imple-
mented in a variety of forms. For example, communication
media 104 may include an Internet connection, such as a
local area network (LAN), a wide area network (WAN), a
fiber optic network, internet over power lines, a hard-wired
connection (e.g., a bus), and the like, or any other kind of
network connection. Communication media 104 may be
implemented using any combination of routers, cables,
modems, switches, fiber optics, wires, radio (e.g., micro-
wave/RF links), and the like. Upon reading the present
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disclosure, it should be appreciated that other ways may be
used to implement communication media 104 for commu-
nications purposes.

[0063] Likewise, it will be appreciated that a similar
communication medium may be used to connect or com-
municatively couple server 108, storage 110, processor 112,
and/or image transformative model 114 to one another in
addition to other elements of environment 100. In example
implementations, communication media 104 may be, or
include, a wired or wireless wide area network (e.g., cellular,
fiber, and/or circuit-switched connection, etc.) for electronic
device 102 and/or server system 106, which may be rela-
tively geographically disparate; and in some cases, aspects
of communication media 104 may involve a wired or
wireless local area network (e.g., Wi-Fi, Bluetooth, unli-
censed wireless connection, USB, HDMI, standard AV, etc.),
which may be used to communicatively couple aspects of
environment 100 that may be relatively close geographi-
cally.

[0064] Server system 106 may provide, receive, collect, or
monitor information to/from electronic device 102, such as,
for example, content, metadata, quality levels, quantization
step sizes, user input, encoders, decoders, latent space
representations, residuals, difference maps, security and
encryption information, and the like. Server system 106 may
be configured to receive or send such information via
communication media 104. This information may be stored
in storage 110 and may be processed using processor 112.
For example, processor 112 may include an analytics engine
capable of performing analytics on information that server
system 106 has collected, received, etc. from electronic
device 102. Processor 112 may include image transforma-
tive model 114 capable of receiving target content, analyzing
target content, compressing target content, encoding target
content, quantizing target content, convolving target con-
tent, deconvolving target content, decoding target content,
decompressing target content, and otherwise processing
content and generating a latent space residual that server
system 106 has collected, received, etc. based on requests
from, or coming from, electronic device 102. In embodi-
ments, server 108, storage 110, and/or processor 112 may be
implemented as a distributed computing network, a rela-
tional database, or the like.

[0065] Server 108 may include, for example, an Internet
server, a router, a desktop or laptop computer, a smartphone,
a tablet, a processor, a component, or the like, and may be
implemented in various forms, including, for example, in an
integrated circuit or collection thereof, in a printed circuit
board or collection thereof, or in a discrete housing/package/
rack or multiple of the same. Server 108 may update
information stored on electronic device 102. Server 108 may
send/receive information to/from electronic device 102 in
real-time or sporadically. Further, server 108 may imple-
ment cloud computing capabilities for electronic device 102.
Upon studying the present disclosure, one of skill in the art
will appreciate that environment 100 may include multiple
electronic devices 102, communication media 104, server
systems 106, servers 108, storage 110, processors 112,
and/or image transformative model 114.

[0066] FIG. 3 is an operational flow diagram illustrating
an example process for generating a latent space residual, in
accordance with one embodiment. The operations of the
various methods described herein are not necessarily limited
to the order described or shown in the figures, and it should
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be appreciated, upon studying the present disclosure, that
variations of the order of the operations described herein are
within the spirit and scope of the disclosure.

[0067] The operations and sub-operations of the flow
diagram may be carried out, in some cases, by one or more
of the components, elements, devices, components, and
circuitry of system 100. This may include one or more of:
server system 106; server 108; processor 112; storage 110;
and/or computing component 1400, described herein and
referenced with respect to at least FIGS. 1 and 14, as well as
subcomponents, elements, devices, components, and cir-
cuitry depicted therein and/or described with respect thereto.
In such instances, the description of the flow diagram may
refer to a corresponding component, element, etc., but
regardless of whether an explicit reference is made, it will be
appreciated, upon studying the present disclosure, when the
corresponding component, element, etc. may be used. Fur-
ther, it will be appreciated that such references do not
necessarily limit the described methods to the particular
component, element, etc. referred to. Thus, it will be appre-
ciated that aspects and features described above in connec-
tion with (sub-) components, elements, devices, circuitry,
etc., including variations thereof, may be applied to the
various operations described in connection with the flow
diagram without departing from the scope of the present
disclosure.

[0068] At operation 302, a target frame may be obtained.
For example, the target frame may be a frame of a video.

[0069] At operation 304, one or more reference frames
may be obtained. The one or more reference frames may
surround the target frame. In some embodiments, the refer-
ence frames may be more than one frame away from the
target frame. In embodiments, a reference frame may be a
decoded frame, a reconstructed frame, and/or another type
of frame.

[0070] At operation 306, an image transformative model
may be obtained. The image transformative model may
include an encoder and a decoder, as described above. For
example, the image transformative model may be based on
a neural network that is trained to jointly optimize a rate-
distortion objective function for the one or more reference
frames and a residual.

[0071] At operation 308, the one or more reference frames
may be applied to the image transformative model. The one
or more reference frames may be encoded and quantized
into a latent space representation. The latent space repre-
sentation may be decoded to generate one or more decoded
reference frames.

[0072] At operation 310, a reconstructed frame may be
generated. The one or more decoded reference frames may
be used to predict a reconstructed frame, which is described
in greater detail in U.S. patent application Ser. No. 16/556,
083.

[0073] At operation 312, the target frame may be applied
to the encoder of the image transformative model. The
encoder may map the image space of the target frame to a
latent space, generating a latent space target frame. In
embodiments, the latent space target frame may be quan-
tized. For example, the values representing the latent space
target frame may be converted into smaller set of discrete
values. In embodiments, this may be accomplished by
rounding the values according to a discrete finite set of
values (e.g., integer values). In some embodiments, quanti-
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zation may include dividing each value by an integer value.
Existing quantization schemes may include DCT or DWT.
[0074] At operation 314, the reconstructed frame may be
applied to the encoder. The encoder may map the image
space of the reconstructed frame to a latent space, generating
a latent space reconstructed frame. In embodiments, the
latent space reconstructed frame may be quantized.

[0075] At operation 316, a latent space residual may be
generated. The latent space residual may be based on the
latent space reconstructed frame and the latent space target
frame. For example, the latent space residual may be the
difference in individual values between the values of the
latent space target frame and the values of the latent space
reconstructed frame. In embodiments, the latent space
residual may be entropy coded based on a probability model.
In some embodiments, the latent space residual and the
latent space reconstructed frame may be combined as input
for decoder of the image transformative model. The com-
bination may be decoded into a decoded target frame.
[0076] FIGS. 4, 5, and 6 may correspond to a reference
frame compression scenario. As illustrated, an input image,
FIG. 4, may be mapped to a latent representation that is
quantized into the representation of FIG. 5.

[0077] FIG. 5 illustrates an example latent space frame, in
accordance with one embodiment. A channel of the latent
space representation is illustrated. The values may be rep-
resented by a temperature map.

[0078] FIG. 6 illustrates an example probability corre-
sponding to the latent space target frame, in accordance with
one embodiment. A channel of the probability model cor-
responding to the latent space target frame is illustrated. The
probabilities may be represented in gray-scale.

[0079] FIGS. 7, 8, and 9 may correspond to a recon-
structed frame that may include a few errors compared to a
target frame. FIG. 7 illustrates an example reconstructed
frame, in accordance with one embodiment. The recon-
structed frame has a few errors that may not be very visually
noticeable in the image space.

[0080] FIG. 8 illustrates an example latent space residual,
in accordance with one embodiment. In the latent space, the
errors may be more distinct, represented by the different
shades in the frame. The values may be represented by a
temperature map. As illustrated, the range of values of FIG.
8 may be smaller than the range of values of FIG. 5,
indicating that a much lower entropy may be achieved,
allowing more efficient encoding.

[0081] FIG. 9 illustrates an example probability corre-
sponding to the latent space residual, in accordance with one
embodiment. The probabilities may be represented in gray-
scale. As illustrated, the errors are further highlighted using
darker shades.

[0082] FIG. 10 illustrates distortion results of various
compression systems, in accordance with one embodiment.
As illustrated in graph 1000, the presently disclosed tech-
nology, represented by line 1010, has the greatest PSNR
over most bits per pixel (BPP) rates compared to H.264
(represented by line 1002), H.264 fast (represented by line
1004), H.265 (represented by line 1006), and H.265 fast
(represented by line 1008). The test results as shown are for
a compression test using a reference frame interval of about
12 frames on the UVG dataset.

[0083] FIG. 11 illustrates distortion results of various
compression systems, in accordance with one embodiment.
As illustrated in graph 1100, the presently disclosed tech-
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nology, represented by line 1110, has the greatest PSNR over
most BPP rates compared to H.264 (represented by line
1102), H.264 fast (represented by line 1104), H.265 (repre-
sented by line 1106), and H.265 fast (represented by line
1108). The presently disclosed technology may perform
similarly up to about 0.1 bpp and outperform the other
existing technologies above about 0.1 bpp. The test may be
similar to the test run in FIG. 10, except it uses the
MCL-JVC dataset.

[0084] FIG. 12 illustrates distortion results of various
compression systems, in accordance with one embodiment.
As illustrated in graph 1200, the presently disclosed tech-
nology, represented by line 1210, has the greatest PSNR at
the higher BPP rates compared to H.264 (represented by line
1202), H.264 fast (represented by line 1204), H.265 (repre-
sented by line 1206), and H.265 fast (represented by line
1208). The presently disclosed technology may outperform
the other existing technologies above about 0.6 bpp. The test
may be similar to the test run in FIG. 10, except it uses the
VTL dataset. While PSNR is used in these figures, other
metrics may be used in tandem with this technology to
ascertain a frame or frame set’s quality.

[0085] FIG. 13 illustrates bit-rate distribution, in accor-
dance with one embodiment. Graph 1300 illustrates bit-rate
distribution over different quality levels. The bottom image
1310 may correspond to a time-lapse video where very few
bits are allocated to motion. The top image 1308 may
correspond to a video where motion may represent about
half the data for lower quality levels. As illustrated, residual
data becomes more important as quality level increases.
Graph 1300 illustrates the repartition of bits in terms of
reference frames, residual, and motion. At lower quality
levels (on the right) for the video with more motion, the
motion information may be as important as the residual
information. As quality level increases, the residual infor-
mation becomes much more important. While motion infor-
mation is not as important for the time-lapse video, the
residual information becomes much more important than the
reference frame information as quality level increases.

[0086] As used herein, the term component might describe
a given unit of functionality that can be performed in
accordance with one or more embodiments of the technol-
ogy disclosed herein. As used herein, a component might be
implemented utilizing any form of hardware, software, or a
combination thereof. For example, one or more processors,
controllers, ASICs, PLLAs, PALs, CPLDs, FPGAs, logical
components, software routines or other mechanisms might
be implemented to make up a component. In implementa-
tion, the various components described herein might be
implemented as discrete components or the functions and
features described can be shared in part or in total among
one or more components. In other words, as would be
apparent to one of ordinary skill in the art after reading this
description, the various features and functionality described
herein may be implemented in any given application and can
be implemented in one or more separate or shared compo-
nents in various combinations and permutations. As used
herein, the term engine may describe a collection of com-
ponents configured to perform one or more specific tasks.
Even though various features or elements of functionality
may be individually described or claimed as separate com-
ponents or engines, one of ordinary skill in the art will
understand that these features and functionality can be
shared among one or more common software and hardware
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elements, and such description shall not require or imply that
separate hardware or software components are used to
implement such features or functionality.

[0087] Where engines and/or components of the technol-
ogy are implemented in whole or in part using software, in
one embodiment, these software elements can be imple-
mented to operate with a computing or processing compo-
nent capable of carrying out the functionality described with
respect thereto. One such example computing component is
shown in FIG. 14. Various embodiments are described in
terms of this example-computing component 1400. After
reading this description, it should be appreciated how to
implement the technology using other computing compo-
nents or architectures.

[0088] Referring now to FIG. 14, computing component
1400 may represent, for example, computing or processing
capabilities found within desktop, laptop, and notebook
computers; hand-held computing devices (PDA’s, smart
phones, cell phones, palmtops, etc.); mainframes, supercom-
puters, workstations, or servers; or any other type of special-
purpose or general-purpose computing devices as may be
desirable or appropriate for a given application or environ-
ment. Computing component 1400 might also represent
computing capabilities embedded within or otherwise avail-
able to a given device. For example, a computing component
might be found in other electronic devices such as, for
example, digital cameras, navigation systems, cellular tele-
phones, portable computing devices, modems, routers,
WAPs, terminals, and other electronic devices that might
include some form of processing capability.

[0089] Computing component 1400 might include, for
example, one or more processors, controllers, control com-
ponents, or other processing devices, such as a processor
1404. Processor 1404 might be implemented using a gen-
eral-purpose or special-purpose processing engine such as,
for example, a physical computer processor, miCroprocessor,
controller, or other control logic. In the illustrated example,
processor 1404 is connected to a bus 1402, although any
communication medium can be used to facilitate interaction
with other components of computing component 1400 or to
communicate externally.

[0090] Computing component 1400 might also include
one or more memory components, simply referred to herein
as main memory 1408. For example, preferably random
access memory (RAM) or other dynamic memory might be
used for storing information and instructions to be executed
by processor 1404. Main memory 1408 might also be used
for storing temporary variables or other intermediate infor-
mation during execution of instructions to be executed by
processor 1404. Computing component 1400 might likewise
include a read-only memory (“ROM?”) or other static storage
device coupled to bus 1402 for storing static information and
instructions for processor 1404.

[0091] The computing component 1400 might also
include one or more various forms of information storage
device 1410, which might include, for example, a media
drive 1412 and a storage unit interface 1420. The media
drive 1412 might include a drive or other mechanism to
support fixed or removable storage media 1414. For
example, a hard disk drive, a floppy disk drive, a magnetic
tape drive, an optical disk drive, a CD or DVD drive (R or
RW), or other removable or fixed media drive might be
provided. Accordingly, storage media 1414 might include,
for example, non-transient electronic storage, a hard disk, a
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floppy disk, magnetic tape, cartridge, optical disk, a CD or
DVD, or other fixed or removable medium that is read by,
written to, or accessed by media drive 1412. As these
examples illustrate, the storage media 1414 can include a
computer usable storage medium having stored therein
computer software or data.

[0092] In alternative embodiments, information storage
mechanism 1410 might include other similar instrumentali-
ties for allowing computer programs or other instructions or
data to be loaded into computing component 1400. Such
instrumentalities might include, for example, a fixed or
removable storage unit 1422 and an interface 1420.
Examples of such storage units 1422 and interfaces 1420 can
include a program cartridge and cartridge interface, a remov-
able memory (for example, a flash memory or other remov-
able memory component) and memory slot, a PCMCIA slot
and card, and other fixed or removable storage units 1422
and interfaces 1420 that allow software and data to be
transferred from the storage unit 1422 to computing com-
ponent 1400.

[0093] Computing component 1400 might also include a
communications interface 1424. Communications interface
1424 might be used to allow software and data to be
transferred between computing component 1400 and exter-
nal devices. Examples of communications interface 1424
might include a modem or softmodem, a network interface
(such as an Ethernet, network interface card, WiMedia,
IEEE 802.XX, or other interface), a communications port
(such as for example, a USB port, IR port, RS232 port,
Bluetooth® interface, or other port), or other communica-
tions interface. Software and data transferred via commu-
nications interface 1424 might typically be carried on sig-
nals, which can be electronic, electromagnetic (which
includes optical), or other signals capable of being
exchanged by a given communications interface 1424.
These signals might be provided to communications inter-
face 1424 via channel 1428. This channel 1428 might carry
signals and might be implemented using a wired or wireless
communication medium. Some examples of a channel might
include a phone line, a cellular link, an RF link, an optical
link, a network interface, a local or wide area network, and
other wired or wireless communications channels.

[0094] In this document, the terms “computer program
medium” and “computer usable medium” are used to gen-
erally refer to media such as, for example, memory 1408,
storage unit 1420, media 1414, and channel 1428. These and
other various forms of computer program media or computer
usable media may be involved in carrying one or more
sequences of one or more instructions to a processing device
for execution. Such instructions embodied on the medium
are generally referred to as “computer program code” or a
“computer program product” (which may be grouped in the
form of computer programs or other groupings). When
executed, such instructions might enable the computing
component 1400 to perform features or functions of the
disclosed technology as discussed herein.

[0095] While various embodiments of the disclosed tech-
nology have been described above, it should be understood
that they have been presented by way of example only, and
not of limitation. Likewise, the various diagrams may depict
an example architectural or other configuration for the
disclosed technology, which is done to aid in understanding
the features and functionality that can be included in the
disclosed technology. The disclosed technology is not
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restricted to the illustrated example architectures or configu-
rations, but the desired features can be implemented using a
variety of alternative architectures and configurations.
Indeed, it will be apparent to one of skill in the art how
alternative functional, logical or physical partitioning, and
configurations can be implemented to implement the desired
features of the technology disclosed herein. Also, a multi-
tude of different constituent component names other than
those depicted herein can be applied to the various parti-
tions. Additionally, with regard to flow diagrams, opera-
tional descriptions, and method claims, the order in which
the steps are presented herein shall not mandate that various
embodiments be implemented to perform the recited func-
tionality in the same order unless the context dictates
otherwise.

[0096] Although the disclosed technology is described
above in terms of various exemplary embodiments and
implementations, it should be understood that the various
features, aspects, and functionality described in one or more
of the individual embodiments are not limited in their
applicability to the particular embodiment with which they
are described, but instead can be applied, alone or in various
combinations, to one or more of the other embodiments of
the disclosed technology, whether or not such embodiments
are described and whether or not such features are presented
as being a part of a described embodiment. Thus, the breadth
and scope of the technology disclosed herein should not be
limited by any of the above-described exemplary embodi-
ments.

[0097] Terms and phrases used in this document, and
variations thereof, unless otherwise expressly stated, should
be construed as open ended as opposed to limiting. As
examples of the foregoing: the term “including” should be
read as meaning “including, without limitation” or the like;
the term “example” is used to provide exemplary instances
of the item in discussion, not an exhaustive or limiting list
thereof; the terms “a” or “an” should be read as meaning “at
least one,” “one or more” or the like; and adjectives such as
“conventional,”  “traditional,”  ‘“‘normal,” “standard,”
“known,” and terms of similar meaning should not be
construed as limiting the item described to a given time
period or to an item available as of a given time, but instead
should be read to encompass conventional, traditional, nor-
mal, or standard technologies that may be available or
known now or at any time in the future. Likewise, where this
document refers to technologies that would be apparent or
known to one of ordinary skill in the art, such technologies
encompass those apparent or known to the skilled artisan
now or at any time in the future.

[0098] The presence of broadening words and phrases
such as “one or more,” “at least,” “but not limited to,” or
other like phrases in some instances shall not be read to
mean that the narrower case is intended or required in
instances where such broadening phrases may be absent.
The use of the term “component” does not imply that the
components or functionality described or claimed as part of
the component are all configured in a common package.
Indeed, any or all of the various components of a compo-
nent, whether control logic or other components, can be
combined in a single package or separately maintained and
can further be distributed in multiple groupings or packages
or across multiple locations.

[0099] Additionally, the various embodiments set forth
herein are described in terms of exemplary block diagrams,
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flow charts, and other illustrations. As will become apparent
to one of ordinary skill in the art after reading this document,
the illustrated embodiments and their various alternatives
can be implemented without confinement to the illustrated
examples. For example, block diagrams and their accompa-
nying description should not be construed as mandating a
particular architecture or configuration.

1. A computer-implemented method comprising:

obtaining, from a non-transient electronic storage, a target

frame;

obtaining, from the non-transient electronic storage, a

reconstructed frame, wherein the reconstructed frame is
based on surrounding reference frames;

encoding, with a physical computer processor, the target

frame into a latent space to generate a latent space
target frame;

encoding, with the physical computer processor, the

reconstructed frame into the latent space to generate a
latent space reconstructed frame; and

generating, with the physical computer processor, a latent

space residual based on the latent space target frame
and the latent space reconstructed frame.

2. The computer-implemented method of claim 1, further
comprising decoding, with the physical computer processor,
the latent space residual and the latent space reconstructed
frame to generate a decoded target frame.

3. The computer-implemented method of claim 1,
wherein the reconstructed frames are generated by:

obtaining, from the non-transient electronic storage, one

or more reference frames;

encoding, with the physical computer processor, the one

or more reference frames;

decoding, with the physical computer processor, the one

or more reference frames to generate one or more
decoded reference frames; and

predicting, with the physical computer processor, a recon-

structed frame based on the one or more decoded
reference frames.

4. The computer-implemented method of claim 1,
wherein encoding the target frame and the reconstructed
frame maps the target frame and the reconstructed frame
from an image space to a latent space.

5. The computer-implemented method of claim 1,
wherein the latent space residual and the latent space recon-
structed frame are quantized in the latent space.

6. The computer-implemented method of claim 1,
wherein the latent space residual and the latent space recon-
structed frame are entropy coded.

7. A computer-implemented method comprising:

obtaining, from a non-transient electronic storage, a target

frame;

obtaining, from the non-transient electronic storage, one

or more reference frames surrounding the target frame;
obtaining, from the non-transient electronic storage, an
encoder and a decoder;

applying, with the physical computer processor, the one or

more reference frames to the decoder to generate one or
more decoded reference frames;
predicting, with the physical computer processor, a recon-
structed frame corresponding to the target frame based
on the one or more decoded reference frames,

applying, with the physical computer processor, the target
frame to the encoder to generate a latent space target
frame;
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applying, with the physical computer processor, the
reconstructed frame to the encoder to generate a latent
space reconstructed frame; and

generating, with the physical computer processor, a latent

space residual based on the latent space target frame
and the latent space reconstructed frame.

8. The computer-implemented method of claim 7, further
comprising applying, with the physical computer processor,
the latent space residual and the latent space reconstructed
frame to the decoder to generate a decoded target frame.

9. The computer-implemented method of claim 7,
wherein the encoder maps an image space to a latent space.

10. The computer-implemented method of claim 7,
wherein the decoder maps a latent space to an image space.

11. The computer-implemented method of claim 7,
wherein obtaining the encoder and the decoder comprises
obtaining, from the non-transient electronic storage, an
image transformative model, wherein the image transforma-
tive model comprises the encoder and the decoder, and
wherein the image transformative model is based on a neural
network.

12. The computer-implemented method of claim 7,
wherein the latent space residual and the latent space recon-
structed frame are quantized in the latent space.

13. The computer-implemented method of claim 7,
wherein the latent space residual and the latent space recon-
structed frame are entropy coded.

14. A system for generating a latent space residual, the
system comprising:

non-transient electronic storage;

a physical computer processor configured by machine-

readable instructions to:

obtain a target frame;

obtain a reconstructed frame, wherein the reconstructed
frame is based on surrounding reference frames;

encode the target frame into a latent space to generate
a latent space target frame;

encode the reconstructed frame into the latent space to
generate a latent space reconstructed frame; and

generate a latent space residual based on the latent
space target frame and the latent space reconstructed
frame.

15. The system of claim 14, wherein the physical com-
puter processor is further configured by machine-readable
instructions to decode the latent space residual and the latent
space reconstructed frame to generate a decoded target
frame.

16. The system of claim 14, wherein the physical com-
puter processor is further configured by machine-readable
instructions to display, via a graphical user interface, the
decoded target frame.

17. The system of claim 14, wherein the reconstructed
frames are generated by:

obtaining one or more reference frames;

encoding the one or more reference frames;

decoding the one or more reference frames to generate

one or more decoded reference frames; and
predicting a reconstructed frame based on the one or more
decoded reference frames.

18. The system of claim 14, wherein encoding the target
frame and the reconstructed frame maps the target frame and
the reconstructed frame from an image space to a latent
space.
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19. The system of claim 14, wherein the latent space
residual and the latent space reconstructed frame are quan-
tized in the latent space.

20. The system of claim 14, wherein the latent space
residual and the latent space reconstructed frame are entropy
coded.



